Skip to main content

Advertisement

Log in

Multicenter review: role of cardiovascular magnetic resonance in diagnostic evaluation, pre-procedural planning and follow-up for patients with congenital heart disease

  • PAEDIATRIC RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

The number of patients with congenital heart disease (CHD) is rapidly increasing in the adult population, mainly due to the improved long-term survival. Serial follow-up with cardiac magnetic resonance imaging (CMR) is very appealing due to its non-invasive nature. CMR exam is able to provide specific information about cardiac function, hemodynamics, anatomy and tissue characterization unlikely achievable by other diagnostic techniques. CMR in CHD plays a role both in early diagnosis and in post-operative follow-up. Black Blood T1 weighted sequences are used to acquire morphological information. Cine Steady State Free Precession sequences are mainly used to provide data about cardiac function and kinesis. Hemodynamic assessment is routinely performed using phase contrast sequences, which provide reliable information concerning vessel flow pattern, cardiac output and intracardiac shunts. Magnetic Resonance Angiography (MRA) and 3D coronary MRA of the whole thorax can provide detailed morphological information regarding great vessels and proximal coronary arteries. Presence of late gadolinium enhancement suggesting myocardial macroscopic fibrosis seems to play a prognostic and diagnostic role even in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M (2014) Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation 130(9):749–756

    Article  PubMed  Google Scholar 

  2. Ntsinjana HN, Hughes ML, Taylor AM (2011) The role of cardiovascular magnetic resonance in pediatric congenital heart disease. J Cardiovasc Magn Reson 13:51

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM et al (2006) Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr 19(12):1413–1430

    Article  PubMed  Google Scholar 

  4. Hijazi ZM, Awad SM (2008) Pediatric cardiac interventions. JACC Cardiovasc Interv 1(6):603–611

    Article  PubMed  Google Scholar 

  5. Armsby L, Beekman RH 3rd, Benson L, Fagan T, Hagler DJ, Hijazi ZM et al (2014) SCAI expert consensus statement for advanced training programs in pediatric and congenital interventional cardiac catheterization. Catheter Cardiovasc Interv 84(5):779–784

    Article  PubMed  Google Scholar 

  6. Taylor AM (2008) Cardiac imaging: MR or CT? Which to use when. Pediatr Radiol 38(Suppl 3):S433–S438

    Article  PubMed  Google Scholar 

  7. Looi JL, Kerr AJ, Gabriel R (2015) Morphology of congenital and acquired aortic valve disease by cardiovascular magnetic resonance imaging. Eur J Radiol 84(11):2144–2154

    Article  PubMed  Google Scholar 

  8. Oosterhof T, Mulder BJ, Vliegen HW, de Roos A (2006) Cardiovascular magnetic resonance in the follow-up of patients with corrected tetralogy of Fallot: a review. Am Heart J 151(2):265–272

    Article  PubMed  Google Scholar 

  9. Lederlin M, Thambo JB, Latrabe V, Corneloup O, Cochet H, Montaudon M et al (2011) Coronary imaging techniques with emphasis on CT and MRI. Pediatr Radiol 41(12):1516–1525

    Article  PubMed  Google Scholar 

  10. Odegard KC, DiNardo JA, Tsai-Goodman B, Powell AJ, Geva T, Laussen PC (2004) Anaesthesia considerations for cardiac MRI in infants and small children. Paediatr Anaesth 14(6):471–476

    Article  PubMed  Google Scholar 

  11. Stockton E, Hughes M, Broadhead M, Taylor A, McEwan A (2012) A prospective audit of safety issues associated with general anesthesia for pediatric cardiac magnetic resonance imaging. Paediatr Anaesth 22(11):1087–1093

    PubMed  Google Scholar 

  12. Jain R, Petrillo-Albarano T, Parks WJ, Linzer JF Sr, Stockwell JA (2013) Efficacy and safety of deep sedation by non-anesthesiologists for cardiac MRI in children. Pediatr Radiol 43(5):605–611

    Article  PubMed  Google Scholar 

  13. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ichikawa Y, Sakuma H, Kitagawa K, Ishida N, Takeda K, Uemura S et al (2003) Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson 5(2):333–342

    Article  PubMed  Google Scholar 

  15. Sommer G, Bremerich J, Lund G (2012) Magnetic resonance imaging in valvular heart disease: clinical application and current role for patient management. J Magn Reson Imaging 35(6):1241–1252

    Article  PubMed  Google Scholar 

  16. Messalli G, Palumbo A, Maffei E, Martini C, Seitun S, Aldrovandi A et al (2009) Assessment of left ventricular volumes with cardiac MRI: comparison between two semiautomated quantitative software packages. Radiol Med 114(5):718–727

    Article  CAS  PubMed  Google Scholar 

  17. Varga-Szemes A, Muscogiuri G, Schoepf UJ, Wichmann JL, Suranyi P, De Cecco CN et al (2015) Clinical feasibility of a myocardial signal intensity threshold-based semi-automated cardiac magnetic resonance segmentation method. Eur Radiol 1–9. doi:10.1007/s00330-015-3952-4

  18. Hartnell GG, Meier RA (1995) MR angiography of congenital heart disease in adults. Radiographics 15(4):781–794

    Article  CAS  PubMed  Google Scholar 

  19. Yucel EK, Anderson CM, Edelman RR, Grist TM, Baum RA, Manning WJ et al (1999) AHA scientific statement. Magnetic resonance angiography: update on applications for extracranial arteries. Circulation 100(22):2284–2301

    Article  CAS  PubMed  Google Scholar 

  20. Steeden JA, Pandya B, Tann O, Muthurangu V (2015) Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease. J Cardiovasc Magn Reson 17:38

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bluemke DA, Achenbach S, Budoff M, Gerber TC, Gersh B, Hillis LD et al (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the american heart association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 118(5):586–606

    Article  PubMed  Google Scholar 

  22. Uribe S, Hussain T, Valverde I, Tejos C, Irarrazaval P, Fava M et al (2011) Congenital heart disease in children: coronary MR angiography during systole and diastole with dual cardiac phase whole-heart imaging. Radiology 260(1):232–240

    Article  PubMed  Google Scholar 

  23. Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF et al (2005) Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol 15(10):2172–2184

    Article  PubMed  Google Scholar 

  24. Dall’Armellina E, Hamilton CA, Hundley WG (2007) Assessment of blood flow and valvular heart disease using phase-contrast cardiovascular magnetic resonance. Echocardiography 24(2):207–216

    Article  PubMed  Google Scholar 

  25. Goldberg A, Jha S (2012) Phase-contrast MRI and applications in congenital heart disease. Clin Radiol 67(5):399–410

    Article  CAS  PubMed  Google Scholar 

  26. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218(1):215–223

    Article  CAS  PubMed  Google Scholar 

  27. Kellman P, Arai AE (2012) Cardiac imaging techniques for physicians: late enhancement. J Magn Reson Imaging 36(3):529–542

    Article  PubMed  PubMed Central  Google Scholar 

  28. Taylor AM, Dymarkowski S, Hamaekers P, Razavi R, Gewillig M, Mertens L et al (2005) MR coronary angiography and late-enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology 234(2):542–547

    Article  PubMed  Google Scholar 

  29. Secinaro A, Ntsinjana H, Tann O, Schuler PK, Muthurangu V, Hughes M et al (2011) Cardiovascular magnetic resonance findings in repaired anomalous left coronary artery to pulmonary artery connection (ALCAPA). J Cardiovasc Magn Reson 13:27

    Article  PubMed  PubMed Central  Google Scholar 

  30. O’Brien P, Marshall AC (2014) Cardiology patient page. Tetralogy of Fallot. Circulation 130(4):e26–e29

    Article  PubMed  Google Scholar 

  31. Beekman RP, Beek FJ, Meijboom EJ (1997) Usefulness of MRI for the pre-operative evaluation of the pulmonary arteries in Tetralogy of Fallot. Magn Reson Imaging 15(9):1005–1015

    Article  CAS  PubMed  Google Scholar 

  32. Chowdhury UK, Pradeep KK, Patel CD, Singh R, Kumar AS, Airan B et al (2006) Noninvasive assessment of repaired tetralogy of Fallot by magnetic resonance imaging and dynamic radionuclide studies. Ann Thorac Surg 81(4):1436–1442

    Article  PubMed  Google Scholar 

  33. Mercer-Rosa L, Yang W, Kutty S, Rychik J, Fogel M, Goldmuntz E (2012) Quantifying pulmonary regurgitation and right ventricular function in surgically repaired tetralogy of Fallot: a comparative analysis of echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 5(5):637–643

    Article  PubMed  PubMed Central  Google Scholar 

  34. Davlouros PA, Karatza AA, Gatzoulis MA, Shore DF (2004) Timing and type of surgery for severe pulmonary regurgitation after repair of tetralogy of Fallot. Int J Cardiol 97(Suppl 1):91–101

    Article  PubMed  Google Scholar 

  35. Coats L, Khambadkone S, Derrick G, Hughes M, Jones R, Mist B et al (2007) Physiological consequences of percutaneous pulmonary valve implantation: the different behaviour of volume- and pressure-overloaded ventricles. Eur Heart J 28(15):1886–1893

    Article  PubMed  Google Scholar 

  36. Khambadkone S, Coats L, Taylor A, Boudjemline Y, Derrick G, Tsang V et al (2005) Percutaneous pulmonary valve implantation in humans: results in 59 consecutive patients. Circulation 112(8):1189–1197

    Article  PubMed  Google Scholar 

  37. Bonello B, Kilner PJ (2012) Review of the role of cardiovascular magnetic resonance in congenital heart disease, with a focus on right ventricle assessment. Arch Cardiovasc Dis 105(11):605–613

    Article  PubMed  Google Scholar 

  38. Boechat MI, Ratib O, Williams PL, Gomes AS, Child JS, Allada V (2005) Cardiac MR imaging and MR angiography for assessment of complex tetralogy of Fallot and pulmonary atresia. Radiographics 25(6):1535–1546

    Article  PubMed  Google Scholar 

  39. Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N et al (2010) ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 31(23):2915–2957

    Article  PubMed  Google Scholar 

  40. Cohen MD, Johnson T, Ramrakhiani S (2010) MRI of surgical repair of transposition of the great vessels. AJR Am J Roentgenol 194(1):250–260

    Article  PubMed  Google Scholar 

  41. Partington SL, Valente AM (2013) Cardiac magnetic resonance in adults with congenital heart disease. Methodist Debakey Cardiovasc J 9(3):156–162

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rydman R, Gatzoulis MA, Ho SY, Ernst S, Swan L, Li W et al (2015) Systemic right ventricular fibrosis detected by cardiovascular magnetic resonance is associated with clinical outcome, mainly new-onset atrial arrhythmia, in patients after atrial redirection surgery for transposition of the great arteries. Circ Cardiovasc Imaging. 8(5). doi:10.1161/CIRCIMAGING.114.002628

  43. Warnes CA (2006) Transposition of the great arteries. Circulation 114(24):2699–2709

    Article  PubMed  Google Scholar 

  44. Gewillig M (2005) The Fontan circulation. Heart 91(6):839–846

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ciliberti P, Schulze-Neick I, Giardini A (2012) Modulation of pulmonary vascular resistance as a target for therapeutic interventions in Fontan patients: focus on phosphodiesterase inhibitors. Future Cardiol 8(2):271–284

    Article  PubMed  Google Scholar 

  46. Fogel MA, Khiabani RH, Yoganathan A (2013) Imaging for preintervention planning: pre- and post-Fontan procedures. Circ Cardiovasc Imaging 6(6):1092–1101

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lewis G, Thorne S, Clift P, Holloway B (2015) Cross-sectional imaging of the Fontan circuit in adult congenital heart disease. Clin Radiol 70(6):667–675

    Article  CAS  PubMed  Google Scholar 

  48. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900

    Article  PubMed  Google Scholar 

  49. Shepherd B, Abbas A, McParland P, Fitzsimmons S, Shambrook J, Peebles C et al (2015) MRI in adult patients with aortic coarctation: diagnosis and follow-up. Clin Radiol 70(4):433–445

    Article  CAS  PubMed  Google Scholar 

  50. Secchi F, Iozzelli A, Papini GD, Aliprandi A, Di Leo G, Sardanelli F (2009) MR imaging of aortic coarctation. Radiol Med 114(4):524–537

    Article  CAS  PubMed  Google Scholar 

  51. Biglino G, Steeden JA, Baker C, Schievano S, Taylor AM, Parker KH et al (2012) A non-invasive clinical application of wave intensity analysis based on ultrahigh temporal resolution phase-contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:57

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kowalik GT, Steeden JA, Pandya B, Odille F, Atkinson D, Taylor A et al (2012) Real-time flow with fast GPU reconstruction for continuous assessment of cardiac output. J Magn Reson Imaging 36(6):1477–1482

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolò Schicchi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Financial support

This study was not funded by any organization.

Ethical approval

This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schicchi, N., Secinaro, A., Muscogiuri, G. et al. Multicenter review: role of cardiovascular magnetic resonance in diagnostic evaluation, pre-procedural planning and follow-up for patients with congenital heart disease. Radiol med 121, 342–351 (2016). https://doi.org/10.1007/s11547-015-0608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-015-0608-z

Keywords

Navigation